Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.270
Filtrar
1.
Genome Med ; 16(1): 60, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658971

RESUMO

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Assuntos
Macrófagos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/imunologia , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Fenótipo , Apoptose/genética , Linhagem da Célula/genética
2.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
3.
Nat Commun ; 15(1): 2744, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553478

RESUMO

Assigning single cell transcriptomes to cellular lineage trees by lineage tracing has transformed our understanding of differentiation during development, regeneration, and disease. However, lineage tracing is technically demanding, often restricted in time-resolution, and most scRNA-seq datasets are devoid of lineage information. Here we introduce Gene Expression Memory-based Lineage Inference (GEMLI), a computational tool allowing to robustly identify small to medium-sized cell lineages solely from scRNA-seq datasets. GEMLI allows to study heritable gene expression, to discriminate symmetric and asymmetric cell fate decisions and to reconstruct individual multicellular structures from pooled scRNA-seq datasets. In human breast cancer biopsies, GEMLI reveals previously unknown gene expression changes at the onset of cancer invasiveness. The universal applicability of GEMLI allows studying the role of small cell lineages in a wide range of physiological and pathological contexts, notably in vivo. GEMLI is available as an R package on GitHub ( https://github.com/UPSUTER/GEMLI ).


Assuntos
Perfilação da Expressão Gênica , Software , Humanos , Linhagem da Célula/genética , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Análise de Célula Única
4.
Sci Adv ; 10(11): eadk7160, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489358

RESUMO

During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.


Assuntos
Miócitos de Músculo Liso , Fatores de Transcrição , Linhagem da Célula/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Miócitos de Músculo Liso/metabolismo , Ativação Transcricional
5.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499786

RESUMO

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Assuntos
Apoferritinas , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem da Célula/genética , Citosina/metabolismo , Fatores de Transcrição Forkhead , Ferro/metabolismo
6.
Nat Commun ; 15(1): 2783, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555276

RESUMO

Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem da Célula/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
7.
Dev Cell ; 59(6): 705-722.e8, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38354738

RESUMO

Wnt signaling is a critical determinant of cell lineage development. This study used Wnt dose-dependent induction programs to gain insights into molecular regulation of stem cell differentiation. We performed single-cell RNA sequencing of hiPSCs responding to a dose escalation protocol with Wnt agonist CHIR-99021 during the exit from pluripotency to identify cell types and genetic activity driven by Wnt stimulation. Results of activated gene sets and cell types were used to build a multiple regression model that predicts the efficiency of cardiomyocyte differentiation. Cross-referencing Wnt-associated gene expression profiles to the Connectivity Map database, we identified the small-molecule drug, tranilast. We found that tranilast synergistically activates Wnt signaling to promote cardiac lineage differentiation, which we validate by in vitro analysis of hiPSC differentiation and in vivo analysis of developing quail embryos. Our study provides an integrated workflow that links experimental datasets, prediction models, and small-molecule databases to identify drug-like compounds that control cell differentiation.


Assuntos
Miócitos Cardíacos , Via de Sinalização Wnt , ortoaminobenzoatos , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Via de Sinalização Wnt/genética , Mesoderma
8.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329875

RESUMO

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transcriptoma/genética , Raízes de Plantas/genética , Linhagem da Célula/genética , Reguladores de Crescimento de Plantas
9.
Nature ; 627(8002): 196-203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355805

RESUMO

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Assuntos
Movimento Celular , Forma do Núcleo Celular , Neutrófilos , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Conformação de Ácido Nucleico , Diferenciação Celular/genética , Inflamação/genética , Elementos Facilitadores Genéticos , Linhagem da Célula/genética
10.
FEBS Lett ; 598(8): 915-934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408774

RESUMO

The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady-state expression patterns of two key transcription factors-Oct4 and Nanog. How dynamically such kind of steady-state expressions are maintained remains elusive. Herein, we demonstrate that steady-state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom-like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self-renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Animais , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Camundongos , Linhagem da Célula/genética , Modelos Biológicos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia
11.
FASEB J ; 38(4): e23492, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363564

RESUMO

Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.


Assuntos
Blastocisto , Análise da Expressão Gênica de Célula Única , Gravidez , Bovinos , Animais , Feminino , Humanos , Camundongos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Cromossomo X/genética , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética , Mamíferos
12.
Mol Cell ; 84(3): 411-412, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307001

RESUMO

In this issue of Molecular Cell, Matsui et al.1 examine lineage determination by pioneer transcription factors, finding that they control cell fate in cooperation with PRDM family members by repressing alternative-lineage and precocious gene expression through establishment of bivalent enhancers.


Assuntos
Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem da Célula/genética , Diferenciação Celular/genética
13.
STAR Protoc ; 5(1): 102809, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180835

RESUMO

Here, we present a protocol to perform barcode decay lineage tracing followed by single-cell transcriptome analysis (BdLT-Seq). We describe steps for BdLT-Seq experimental design, building barcoded episome reporters, performing episome transfection, and barcode retrieval. We then describe procedures for sequencing library construction while providing options for sample multiplexing and data analysis. This BdLT-Seq technique enables the assessment of clonal evolution in a directional manner while preserving isogeneity, thus allowing the comparison of non-genetic molecular features between isogenic cell lineages. For complete details on the use and execution of this protocol, please refer to Shlyakhtina et al. (2023).1.


Assuntos
Evolução Clonal , Padrões de Herança , Linhagem da Célula/genética , Clonagem Molecular , Análise de Dados
14.
Elife ; 122024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284404

RESUMO

Pattern formation originates during embryogenesis by a series of symmetry-breaking steps throughout an expanding cell lineage. In Drosophila, classic work has shown that segmentation in the embryo is established by morphogens within a syncytium, and the subsequent action of the gap, pair-rule, and segment polarity genes. This classic model however does not translate directly to species that lack a syncytium - such as Caenorhabditis elegans - where cell fate is specified by cell-autonomous cell lineage programs and their inter-signaling. Previous single-cell RNA-Seq studies in C. elegans have analyzed cells from a mixed suspension of cells from many embryos to study late differentiation stages, or individual early stage embryos to study early gene expression in the embryo. To study the intermediate stages of early and late gastrulation (28- to 102-cells stages) missed by these approaches, here we determine the transcriptomes of the 1- to 102-cell stage to identify 119 embryonic cell states during cell fate specification, including 'equivalence-group' cell identities. We find that gene expression programs are modular according to the sub-cell lineages, each establishing a set of stripes by combinations of transcription factor gene expression across the anterior-posterior axis. In particular, expression of the homeodomain genes establishes a comprehensive lineage-specific positioning system throughout the embryo beginning at the 28-cell stage. Moreover, we find that genes that segment the entire embryo in Drosophila have orthologs in C. elegans that exhibit sub-lineage-specific expression. These results suggest that the C. elegans embryo is patterned by a juxtaposition of distinct lineage-specific gene regulatory programs each with a unique encoding of cell location and fate. This use of homologous gene regulatory patterning codes suggests a deep homology of cell fate specification programs across diverse modes of development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Drosophila/genética , Padronização Corporal/genética , Embrião não Mamífero/metabolismo
15.
EBioMedicine ; 100: 104971, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244291

RESUMO

BACKGROUND: Neoadjuvant chemoimmunotherapy has offered novel therapeutic options for patients with locally advanced oesophageal squamous cell carcinoma (ESCC). Depicting the landscape of genomic and immune profiles is critical in predicting therapeutic responses. METHODS: We integrated whole-exome sequencing, single-cell RNA sequencing, and immunofluorescence data of ESCC samples from 24 patients who received neoadjuvant treatment with PD-1 inhibitors plus paclitaxel and platinum-based chemotherapy to identify correlations with therapeutic responses. FINDINGS: An elevation of small insertions and deletions was observed in responders. DNA mismatch repair (MMR) pathway alternations were highly frequent in patients with optimal responses and correlated with tumour infiltrating lymphocytes (TILs). Among the TILs in ESCC, dichotomous developing trajectories of B cells were identified, with one lineage differentiating towards LMO2+ germinal centre B cells and another lineage differentiating towards CD55+ memory B cells. While LMO2+ germinal centre B cells were enriched in responding tumours, CD55+ memory B cells were found to correlate with inferior responses to combination therapy, exhibiting immune-regulating features and impeding the cytotoxicity of CD8+ T cells. The comprehensive evaluation of transcriptomic B cell lineage features was validated to predict responses to immunotherapy in patients with cancer. INTERPRETATION: This comprehensive evaluation of tumour MMR pathway alternations and intra-tumoural B cell features will help to improve the selection and management of patients with ESCC to receive neoadjuvant chemoimmunotherapy. FUNDING: National Science Foundation of China (82373371, 82330053), Eastern Scholar Program at Shanghai Institutions of Higher Learning, National Science and Technology Major Project of China (2023YFA1800204, 2020YFC2008402), and Science and Technology Commission of Shanghai Municipality (22ZR1410700, 20ZR1410800).


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Terapia Neoadjuvante , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Linfócitos T CD8-Positivos , Linhagem da Célula/genética , China , Genômica
16.
Genes Dev ; 38(1-2): 4-10, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38233109

RESUMO

B lineage priming by pioneer transcription factor EBF1 requires the function of an intrinsically disordered region (IDR). Here, we examine the role of regularly spaced tyrosines in the IDR as potential determinants of IDR function and activity of EBF1. We found that four Y > A mutations in EBF1 reduced the formation of condensates in vitro and subdiffractive clusters in vivo. Notably, Y > A mutant EBF1 was inefficient in promoting B cell differentiation and showed impaired chromatin binding, recruitment of BRG1, and activation of specific target genes. Thus, regularly spaced tyrosines in the IDR contribute to the biophysical and functional properties of EBF1.


Assuntos
Linfócitos B , Regulação da Expressão Gênica , Linhagem da Célula/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Heterocromatina/metabolismo
17.
Science ; 383(6681): 413-421, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271512

RESUMO

Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.


Assuntos
Autoimunidade , Linfócitos B , Diferenciação Celular , Regulação da Expressão Gênica , Lúpus Eritematoso Sistêmico , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Humanos , Camundongos , Autoimunidade/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Haploinsuficiência , Envelhecimento/imunologia , Modelos Animais de Doenças , Feminino
18.
Nat Commun ; 15(1): 583, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233381

RESUMO

In contrast to rodents, the mechanisms underlying human trophectoderm and early placenta specification are understudied due to ethical barriers and the scarcity of embryos. Recent reports have shown that human pluripotent stem cells (PSCs) can differentiate into trophectoderm (TE)-like cells (TELCs) and trophoblast stem cells (TSCs), offering a valuable in vitro model to study early placenta specification. Here, we demonstrate that the VGLL1 (vestigial-like family member 1), which is highly expressed during human and non-human primate TE specification in vivo but is negligibly expressed in mouse, is a critical regulator of cell fate determination and self-renewal in human TELCs and TSCs derived from naïve PSCs. Mechanistically, VGLL1 partners with the transcription factor TEAD4 (TEA domain transcription factor 4) to regulate chromatin accessibility at target gene loci through histone acetylation and acts in cooperation with GATA3 and TFAP2C. Our work is relevant to understand primate early embryogenesis and how it differs from other mammalian species.


Assuntos
Células-Tronco Pluripotentes , Fatores de Transcrição , Gravidez , Feminino , Humanos , Camundongos , Animais , Linhagem da Célula/genética , Fatores de Transcrição/genética , Trofoblastos/fisiologia , Diferenciação Celular/genética , Mamíferos , Primatas , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Domínio TEA
19.
Cell Rep Med ; 5(2): 101394, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280378

RESUMO

A tumor ecosystem constantly evolves over time in the face of immune predation or therapeutic intervention, resulting in treatment failure and tumor progression. Here, we present a single-cell transcriptome-based strategy to determine the evolution of longitudinal tumor biopsies from liver cancer patients by measuring cellular lineage and ecology. We construct a lineage and ecological score as joint dynamics of tumor cells and their microenvironments. Tumors may be classified into four main states in the lineage-ecological space, which are associated with clinical outcomes. Analysis of longitudinal samples reveals the evolutionary trajectory of tumors in response to treatment. We validate the lineage-ecology-based scoring system in predicting clinical outcomes using bulk transcriptomic data of additional cohorts of 716 liver cancer patients. Our study provides a framework for monitoring tumor evolution in response to therapeutic intervention.


Assuntos
Neoplasias Hepáticas , Humanos , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Microambiente Tumoral/genética
20.
Stem Cell Reports ; 19(2): 174-186, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38215757

RESUMO

In early mammalian development, cleavage stage blastomeres and inner cell mass (ICM) cells co-express embryonic and extra-embryonic transcriptional determinants. Using a protein-based double reporter we identify an embryonic stem cell (ESC) population that co-expresses the extra-embryonic factor GATA6 alongside the embryonic factor SOX2. Based on single cell transcriptomics, we find this population resembles the unsegregated ICM, exhibiting enhanced differentiation potential for endoderm while maintaining epiblast competence. To relate transcription factor binding in these cells to future fate, we describe a complete enhancer set in both ESCs and naive extra-embryonic endoderm stem cells and assess SOX2 and GATA6 binding at these elements in the ICM-like ESC sub-population. Both factors support cooperative recognition in these lineages, with GATA6 bound alongside SOX2 on a fraction of pluripotency enhancers and SOX2 alongside GATA6 more extensively on endoderm enhancers, suggesting that cooperative binding between these antagonistic factors both supports self-renewal and prepares progenitor cells for later differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição , Animais , Linhagem da Célula/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Camadas Germinativas , Endoderma , Blastocisto , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...